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NASA TT F-10, 499 

A NEW METHOD OF SOLVING HEAT-CONDUCTION PROBLEMS FOR 
BODIES OF REVOLUTION 

V. I. Makhovikov 
(Khar 'kov) 

ABSTRACT 

A method is proposed f o r  solving problems of 
s t a t iona ry  hea t  conduction for  bodies of revolut ion.  
When the  boundary condi t ions on t h e  su r face  of t he  
body are s a t i s f i e d ,  t h i s  method makes i t  poss ib le  t o  
apply the  well-studied procedures f o r  solving planar  
problems f o r  harmonic functions.  
problem i s  examined i n  d e t a i l .  

The axisymmetric 

/151* 

L e t  us assume t h a t  t he  body V i s  obtained when t h e  planar  region D,  
which is bounded by the  contour K, is revolved with respec t  t o  t h e  z-axis. 
W e  s h a l l  employ the  c y l i n d r i c a l  coordinate system p ,  z ,  9 (Ref. 1, 2 ) ,  and 
then t h e  equation of the  countour K is  a func t ion  of the  va r i ab le s  p, z .  
The e s s e n t i a l  f ea tu re  of t he  method which is advanced cons i s t s  of t h e  f a c t  
t h a t  t h e  body of revolut ion is  assumed t o  be made of a completely nonuniform 
material ,  whose thermal conduct ivi ty  coe f f i c i en t  A is  a d i f f e r e n t i a b l e  func- 
t i o n  of t h e  va r i ab le s  p ,  z ,  0 .  
t h i s  func t ion  r e s u l t s  i n  the  f a c t  t h a t  t h e  thermal conduct ivi ty  equation is 
considerably s impl i f ied ,  which makes i t  poss ib l e  t o  represent  t he  temperature 
i n  terms of harmonic funct ions of the var iab les  p ,  z .  When t h e  boundary con- 
d i t i o n s  on the  body sur face  a r e  f u l f i l l e d ,  t h i s  enables us t o  apply the  w e l l -  
known, e f f e c t i v e  methods of solving planar problems f o r  a wide c l a s s  of regions 
D. I n  s p i t e  of the  l i m i t a t i o n  imposed on the  funct ion A ,  t he re  i s  a compara- 
t i v e l y  l a r g e  amount of freedom f o r  va r i a t ion  i n  t h i s  funct ion.  
d e f i n i t e  range of changes i n  t h e  var iab les  p, z ,  9 ,  t h i s  makes i t  poss ib le  
t o  have A approximate a given expression, p a r t i c u l a r l y  a constant  value,  and 
t o  obta in  i n  t h i s  way t h e  e f f e c t i v e  so lu t ion  of t he  thermal conduct ivi ty  prob- 
l e m  f o r  a body made of a material which i s  c lose  t o  being uniform. 

The imposition of a d e f i n i t e  condi t ion on 

Within a 

When the re  is  a s t a t iona ry  thermal regime and when there  are no hea t  
sources i n  the  body, the  equation of the rma l  conduct ivi ty  i n  a nonuniform 
medium may be wr i t t en  as follows (Ref. 1, 2) 

il a a  a l a  
= A A + - (In pk) - + - (In id) - + -- (In h)  
- c a p  az ilz p2 a6 

* Numbers i n  t h e  margin ind ica t e  pagination i n  the  o r i g i n a l  fore ign  t e x t .  
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where 

We shall try to determine the temperature in the following form 

1 
T = - Q ,  

W 

(3) 

where w ,  @ are the differentiable functions of the variables p ,  2 ,  9 ,  w + 0. 
Substituting (3) in (l), we may transform equation (1) into the following 
form 

where 1152 

(5) 

Setting 

we may transform expressions ( 4 ) ,  (5) to the following form 

1 
g ( w )  = -- A W .  

W 

Let us examine the solution of equation (7) for the case when the tem- 
perature does not depend on 9 .  Taking expression (2) into account, as well 
as the fact that the operator A does not depend on 9 here, it is advantageous 
to require g(W) = 0. 
must satisfy from (7), (8): 

We then obtain the equations which the functions @, w 

The general solution of equation (9) may be written in the form @ = + ( e )  + 
+ 9(5) 
region 
obtain 

2 

(E. = p + iz), where +(E.)  is the function which is analytical in the 
D; +(5) is the complex conjugate function. Employing formula ( 3 ) ,  we 
the following for the temperature 



. 

Thus, under the  conditions (61, (10) t he  
equat ion (1). 

(11) 

temperature (11) sat isf ies  the  

Assuming t h a t  (10) is a harmonic funct ion of w ,  l e t  us  determine 
whether i t  is poss ib le  t o  have t h e  following expression 

W 2 i P  (12) 

approximate t h e  given value of A .  
s p e c i a l  s tudy,  and i n  order  t o  have expression (12) approximate t h e  given ex- 
press ion  X i t  is  poss ib le  t o  employ t h e  well-known approximation methods of 
func t ions  by series of funct ions which a re  previously known (Ref. 3 - 5 ) .  W e  
s h a l l  p resent  examples below, where i t  is  shown t h a t  even t h e  s implest  func- 
t i o n s  of w e x i s t ,  by means of which i t  i s  poss ib le  t o  have expression (12) 
approximate a constant value,  with an accuracy which i s  s u f f i c i e n t  f o r  p rac t i -  
cal app l i ca t ions  within c e r t a i n  ranges  of  changes i n  t h e  va r i ab le s  p ,  z -- i .e . ,  
it is poss ib l e  t o  obta in  t h e  approximate equa l i ty  

For the  general  case, t h i s  problem requi res  

WZ - % Lo = const. 
D 

Example 1. W e  have t h e  funct ion 

where a ,  1.1 are the  a r b i t r a r y  constants  s a t i s f y i n g  equation (10). According t o  
formula (6) ,  w e  ob ta in  

An ana lys i s  of t h e  funct ion (15) shows that i t s  de r iva t ive  wi th  respec t  
t o  p a t  t h e  poin t  p = 1-1 equals zero,  and t h a t  a t  t h i s  po in t  t h e  funct ion (15) 
has a minimum. L e t  us requi re  

f o r  

where 6 is  a s u f f i c i e n t l y  s m a l l  pos i t i ve  quant i ty .  I n  order t o  f u l f i l l  condi- 
t i o n  (16),  i t  i s  s u f f i c i e n t  t o  determine t h e  cons tan ts  a ,  p 1 ,  p 2  i n  such a way 
t h a t  

Se t t i ng  1153 

(19) a = ? . O , O l ( l  + 6 )  (Pl  4- P) --2 

and s u b s t i t u t i n g  (15), with allowance for  (19),  i n  (181, w e  s a t i s f y  equation 
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(18) f o r  

L e t  us  give t h e  values  of p i ,  p 2  i n  the case of 6 = 0.05 and 0.1, i .e. ,  
f o r  cases when t h e  maximum deviat ion of X(p) from X O  = const is 5 and lo%,  
respec t ive ly ,  wi th in  t h e  range (17) 

6 = 0,03, p i  = 0,5285 p, p~ = 3,5S pi;  6 = 0,l: pl = 0,4034 p, PZ = G,18 pi. (21) 

Since real bodies are no t  absolutely uniform i n  the  majori ty  of cases, 
we may employ formulas (11) and (14) t o  study the  temperature of t he  bodies ,  
which are customarily assumed t o  be uniform. 
f o r  6 ,  norms must be es tab l i shed  which s t i p u l a t e  t h e  limits (17) and (20), 
where formula (15) is appl icable .  
be assumed, w e  may employ formulas (11) and (14) t o  study bodies of revolu- 
t i o n ,  whose region D l i es  within the  l i m i t s  (21) and -ad 2 d to, where 1-1 is  
an a r b i t r a r y  constant ,  1-1 > 0. 

When real bodies are ca lcu la ted  

I n  p a r t i c u l a r ,  i f  6 = 0.05 o r  6 = 0.1 may 

Example 2. I f  w e  change t o  polar  coordinates i n  the  p ,  z plane, 

then the  following f o m  
1 -  - 
2 

w = -- IC [ (1 - ia) 

may be  assigned t o  t h e  so lu t ion  of (10). 

Here e, a are real constants .  ‘According t o  ( 6 ) ,  w e  have 

The funct ion A ( $ )  a t  t h e  point  $ = $ 0 ,  which may be determined by t h e  
following equation 

(25) 
tf; $0 - tg (?)0/2) 
1 - tg 11;o tg ($0/2) 

u =  

has a minimum. Therefore,  w e  may require  

where 

and 6 is a s u f f i c i e n t l y  s m a l l ,  pos i t i ve  quant i ty .  I n  order t h a t  the condi- 
t i o n s  may be f u l f i l l e d ,  t he  constants  e,  $1, $2 must be determined so  t h a t  
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W e  ob ta in  t h e  following formula fo r  t h e  constant e 
ho (1 - 6)cos $0 

(cos $012 - a sin +o/2) 2 ' 
c =  

L e t  us  c a l c u l a t e  a, $1, $2 f o r  certain $0 f o r  the case 6 = 0.05 

Thus, i f  w e  assume 6 = 0.05, w e  may then employ formulas (11) and (23) t o  
study t h e  temperatures of uniform bodies of revolut ion,  whose region D lies 
w i t h i n  t h e  l i m i t s  (27) indicated by formulas (30) f o r  c e r t a i n  cases. 

Example 3. If w e  change t o  e l l i p t i c a l  coordinates (Ref. 6) i n  the p ,  z 
plane,  w e  have 

* * 
(31) p = p s h u s i n p ,  z = pchacosf i ,  0 G a < 00, 0 < P T 

where l.i i s  t h e  scale constant,  and equation (10) assumes t h e  following form 
iizw 52w 

5pz azz  Fz(sh2 u f sin2 p) ( a d  O g z  

1 azw a2w 

+-- - - -+-)=o. I (32) - 

I f  w e  assume t h e  s o l u t i o n  of (32) has t h e  form 

w = -fphocci(1+ aa) (1 + bP) ,  (33) 
where e,  el, Xo,  a, b are constants ,  then according t o  formula (6) ,  wi th  
allowance f o r  (31),  w e  s h a l l  have 

The constants  e, a, el, b and t h e  boundary values  
determined so  t h a t  

i L l , ( U )  = 1 + l - I l ( U ) ,  hZ(l3) = 1 + n2(p), 

L e t  us  perform c e r t a i n  computations. 

For t h e  funct ion A 1  (a): f o r  e = 0.0876, a = 2.78, a1 = 0.2, a2 = 2.4 
we have 6 1  = 0.099, A 1  (0.2) = 1.052, A 1  (0.4) = 0.95, A 1  (0.6) = 0.978, 
A 1  (0.8) = 1.032, A 1  (1) = 1.064, X 1  (1.2) = 1.094, X 1  (1.4) = 1.096, A 1  (1.6) 
= 1.099, A 1  (1.8) = 1.07, A 1  (2) = 1.039, A 1  (2.2) = 0.992, A 1  (2.4) = 0.944, 
min P = P I  = l.i s h  a1 s i n  B ,  max p = p 2  = 1-1 sh  a2 s in  B ,  p 2 :  p 1  = 27.1. 

~~~~ ~~~ 

* Translator's Note: s h  denotes s inh ;  ch denotes cosh. 
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For the function A2(6) at the point 6 = 61, which may be determined by 
the equation 

this function has a minimum. We may determine the constants el, B1, 62 s o  
that X2(BO)= 1 - 6 2 ,  
have: c1 = 

Xz(B1) = A2(f32) = 1 + 62, where 61 < 60 < 62. We 
(1 - 62) sin B o  (1 + b 8 0 ) - ~ ,  and for 6, = 0.05 

B o  = n / 2 ,  b = 0, p 1  = l J 4 ,  p 2  = 2,02, 

B o  = 1,32, b = 0,134, c i  = 0,664, , 

P i  0,922, P z  == 1,793, 

P o  = 1, b = 0,473, c i  = 0,368, pi = O,G3, pz = 1,447, 

1 = 0,6, b = 1,3, c1 = 0,109, 1;l = o,n4, I:2 = 0,38, 

$0 = 0,2, b = 4,86, c i  = 0,0486, pi = 0,107, fi ,z = 0,37. 

These examples show that equality (13) is obtained, within an accuracy 
which is satisfactory for practical applications, even by means of the 
simplest functions w [see (141, (23), (33)]. Therefore, if formula (11) 
is employed, the boundary conditions on the surface of the body Vmay be 
satisfied for the region D of any complexity, provided that it lies within 
the limits (171, (27) or (35). If the temperature on the surface of the 
body is given in the form of the function q ,  which is a function of the 
boundary curve of the region D -- contour K -- then the boundary condition 
assumes the following form 

The boundary value problem (37) may be solved for the multiply-connected 
region D, for which we must employ the well-known methods of solving the 
planar problem of Dirichlet [for example, (Ref. 7 - 9 ) ] .  

Received 
April 29, 1965 
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